
Zoom into the Future

Nanosurf Python Library Overview

Installation, quick start, demo overview, and app development

V1.9

Content

Installing and using the library

Overview of the library functions

Overview of the demo apps

Creating applications with user interfaces

For library version 1.9 and newer

def analyze_force_curve(distance_nm:np.array,
force_nN:np.array, baseline_window_begin:float,
baseline_window_end:float):

Next-Level Nanotechnology Tools

Installing and usage

The Nanosurf library

The library provides packages to access

our AFM control software, many

functions to analyze data and a full

application framework to create apps

with graphical user interface.

Many demo applications and templates

give you a kick start into own projects.

nanosurf

Framework

SPM

Math

lib

Util

app

spm_template

Access to AFM software scripting interface

GUI and app: plots, numbers, tables

Signal analysis e.g.: FFT, Peak detection, Noise floor

NID and NHD data file reader, data export, others

application to copy for own projects.

demo_wavemode_nma_analysis

Data analysis scripts to copy for own projects.

The library can be used with Python v3.9 up to v3.12.

Download it from ‘python.org’. Do not use the python available in Windows Store.

We are using VisualStudioCode as programming environment. But other IDE or even

pure command line access is working too.

In VisualStudioCode the extension ‘Python’ should be installed. In addition, we

recommend the extension ‘Ruff’ and ‘Code Spell Checker’.

After you have a working python environment, you can install the Nanosurf Library

from pipy server. See next slide.

Installing and prerequisites, Part 1/2

After you have a working python environment, you are ready to install the Nanosurf Library.

Open a command shell and type: pip install nanosurf

If you want to upgrade to the latest version of the Nanosurf Library, type:

pip install Nanosurf --upgrade

The library and its dependencies are downloaded automatically.

Depending on your python installation, the library and the demo applications are installed in
the following folder (replace the number 312 with your version):

Either here: %appdata%\Python\Python312\site-packages\nanosurf

or here: %programfiles%\Python312\Lib\site-packages\nanosurf

Installing and prerequisites, Part 2/2

They library is organized in sub-packages starting at nanosurf.lib.

Demo applications are in nanosurf.app and documentations in nanosurf.doc

General Nanosurf library usage

To get access to the most common library functionality include the

statement import nanosurf as nsf at top of a python file.

The code completion functionality in VisualStudioCode will give you

hints about the package content when you start writing nsf..

Only when importing rarely used packages or single library elements, use import
nanosurf.lib.x as x or from nanosurf.lib.x import y

Next-Level Nanotechnology Tools

Overview of the library
functions

There are two software platforms with different scripting interfaces:

There is the ‘SPM’ scripting interface which is implemented in our classic AFM/STM Control software (Naio, Easyscan2, C3000, Core, CX

software). Access is provided by nsf.SPM(). The interface is described in the “Script Programmers Manual” which is provided in the SPM
Software in “Help” panel.

To access the script commands of the new Studio-Software, use nsf.Studio(). The interface is loaded at runtime and a python wrapper is build.
Therefore, the code completion functionality of VisualStudioCode can be used.

Controlling AFM Software: nanosurf.lib.spm

import nanosurf as nsf

connect with Studio application
studio = nsf.Studio()
connected = studio.connect()
if connected:

wf_approach = studio.spm.workflow.approach
wf_approach.property.approach_speed.value = 10.0
wf_approach.start_approach()

import nanosurf as nsf

#connect with classic spm application
spm = nsf.SPM()
connected = spm.is_connected()
if connected:

obj_approach = spm.application.Approach
obj_approach.ApproachSpeed = 10.0
obj_approach.Start()

Connecting with Studio Software Connecting with SPM Software

SPM Control software creates nid-files,

Studio Control Software creates nhf-files.

For both file type there is a class providing read
access to these data files to extract measured data.

See the two examples on the right

Reading NID and NHF datafiles: nanosurf.lib.util
nid_file = nsf.util.nid_reader.NIDFileReader()
ok = nid_file.read(r"example_date.nid")
if ok:

fwd_segment = nid_file.data.image.forward
topo_index = nid_file.param['Dim2Name'].index("Z-Axis")
topo_data = fwd_segment["Z-Axis"]
topo_unit = nid_file.data_param.image_dim_info["X"]['units'][topo_index]

do some calculations on data
mean_val = np.mean(topo_data)
rms_val = np.sqrt(np.sum(np.square(topo_data-mean_val)))/len(topo_data)
print(f"Roughness of topography is {rms_val:.3e} {topo_unit}")

nhf_file = nsf.util.nhf_reader.NHFFileReader(verbose=False)
ok = nhf_file.read(r"example_date.nhf")
if ok:

nhf_file.pretty_print_structure() # show content of file

fwd_segment = nhf_file.measurement["Image 1"].segment["Forward"]
topo_channel = fwd_segment.read_channel("Topography")
topo_data = topo_channel.dataset
topo_unit = topo_channel.unit

do some calculations on data
mean_val = np.mean(topo_data)
rms_val = np.sqrt(np.sum(np.square(topo_data-mean_val)))/len(topo_data)
print(f"Roughness of {topo_channel.name} is {rms_val:.3e} {topo_unit}")

Datasets read from files or calculated by analysis functions can be exported into Gwyddion file format.

A minimal example is shown by the following code:

Export data to Gwyddion: nanosurf.lib.util

from nanosurf.lib.util import gwy_export

prerequisites: data are first read from nhf-file as done in example in the nhf_reader slide

image_points_per_line = measurement.attribute['image_points_per_line']
image_number_of_line = measurement.attribute['image_number_of_lines']
image_size_x = measurement.attribute['image_size_x']
image_size_y = measurement.attribute['image_size_y’]

Transform lists into image matrix
gwy_image = np.flipud(np.reshape(np.array(topo_data), (image_number_of_line, image_points_per_line)))

done = gwy_export.savedata_gwy("my_file.gwy", size_info=gwy_export.GwySizeInfo(
x_range=image_size_x,
y_range=image_size_y,
unit_xy="m"

),
data_sets=[gwy_image],
data_labels=[topo_channel.name],
data_units=[topo_channel.unit])

A more sophisticated usage of the export functionality can be found in this example script:

nanosurf\app\demo_wavemode_nma_analysis\demo_spec_analysis_contact_mech_mod.py

Data plotted by graphical UI applications using ‘pyqtgraph’ can be saved to to images in the png file format.

‘Pyqtgraph’ is a plot package for applications based on the QT graphical user interface framework.

This is used in our GUI applications and demo apps. Read on in the chapter of “GUI application programming” for more details.

See an example below shows a section from the nanosurf\app\app_demo_scanning_and_lib_usage demo

Export plots to PNG file: nanosurf.lib.util

from nanosurf.lib.util import dataexport

code extraction from the demo “nanosurf\app\app_demo_scanning_and_lib_usage\qui.py” for “Save Image” button event

def save_color_map(self):
destination_file = nsf.util.fileutil.ask_save_file("Please provide filename", suffix_mask="*.png")
if destination_file:

dataexport.saveplot_png(destination_file, self.colormap_plot.plot)

In many scripts one must create files and folders or ask the user for files or folders with a dialog.

The file utilities sub-package provides routines to accomplish these tasks.

More file utilities: nanosurf.lib.util.fileutil

from nanosurf.lib.util import fileutil

fileutil.create_folder(file_path: pathlib.Path) -> bool:
""" Make sure the folder exists. If needed, it creates the intermediate directories starting from root. """

fileutil.create_unique_filename(base_name: str, folder: pathlib.Path, suffix:str, …) -> pathlib.Path:
""“ Create a unique filename. The new file name has the structure of 'base_name_timestamp_index.suffix’ """

fileutil.create_unique_folder(base_name: str, folder: pathlib.Path, add_timestamp: bool = True, separator: str = '_'):
""“ Create a unique folder. The folder name has the structure of 'base_name_timestamp_index’ """

fileutil.ask_folder(title:str = None, start_dir:pathlib.Path = None) -> pathlib.Path:
""" Prompt user to select a folder. The function present the user a dialog to select a folder or create a new one. """

fileutil.ask_open_file(title:str = None, start_dir:pathlib.Path = None, suffix_mask:str = None) -> pathlib.Path:
""" Prompt user to select a file. Prensents the user a dialog to select an existing. ""“

fileutil.ask_save_file(title:str = None, target_dir:pathlib.Path = None, default_file:pathlib.Path = None, suffix_mask:str =
None) -> pathlib.Path:

""" Prompt user to define a file to save to. Presents the user a dialog to select an existing file or to define one. """

Processing data and especially plotting or displaying data values in real-life scripts typically requires plotting correct values and units of the data as well as the
signal name associated to the data (e.g.: print 2.45e-9 as “Topography rms = 2.45nm”).

For this, the library defines three data types: SciVal, SciChannel and SciStream

SciVal – holds a value and a unit in a single class together. It also provides printing and converting from string to number.

SciChannel – holds an array of values (numpy array) with a name and a unit.

SciStream – holds a reference axis (e.g. timeline or frequency spectrum) and multiple synchronous data channels (e.g. Topography, Deflection,

Tip-Current or Amplitude/Phase) each as SciChannel.

Most of the functions in nanosurf.lib.sci_math take or create these datatypes.

But also different export and plot functions handles these datatypes.

Values with ‘unit’ and ‘name’: nanosurf.lib.datatypes

a = nsf.SciVal(2.45e-9, unit_str="m")
print(a) >>> 2.450 nm
i = nsf.sci_val.from_str("0.1mm")
print(i) >>> 100.000 µm

reference = nsf.SciChannel([1,2,3,4,5], unit="points", name="cycle")
measurement = nsf.SciChannel([0.125, 0.4587, 0.895, 1.258, 3.415], unit="V", name="ADC-Channel 0")
data = nsf.SciStream((reference, measurement))
nsf.plot.plot_stream(data, title="Measurement report", log_y=True)

In addition to mathematical libraries like numpy and scipy we provide with this library some functions not found in these libraries but that are useful for signal analysis.

Most of them are working with SciChannels and SciStreams.

Here are some functions found in this package:

Mathematical functions: nanosurf.lib.sci_math

measurement = nsf.SciChannel([0.00125, 0.04587, 8.95, 1.258, 0.0415], unit="V", name="ADC-Channel 0")
spec = nsf.sci_math.calc_fft(measurement, samplerate=5000, spectral_density=True)
noise_floor = nsf.sci_math.get_noise_floor(spec)
print(f"Noise floor: {noise_floor}")

>>> Noise floor: 122.261 mV\sqrt(Hz)

nsf.sci_math.calc_fft(data_samples: ch.SciChannel, samplerate: float, window: fft_window_type = fft_window_type.hanning, spectral_density):
""" calculate amplitude or spectral density spectrum from time data array(s)

nsf.sci_math.calc_compressed_spectrum(spec_data: ss.SciStream, min_dist_factor=1.02, algo:compress_spec_algo) -> ss.SciStream:
"""Reduces number of data points in large data sets by logarithmic compression method

nsf.sci_math.get_total_harmonic_distortion(spec_data: ss.SciStream, channel_index: int, max_number_of_harmonics: int) -> float:
nsf.sci_math.get_noise_floor(spec_data: ss.SciStream, channel_index: int) -> sci_val.SciVal:

nsf.sci_math.find_highest_peak(stream: ss.SciStream, channel_index: int) -> tuple[bool, float, float]:
nsf.sci_math.remove_peaks_in_spectrum(spec_data: ss.SciStream, channel_index:int, frq_peaks:list[float) -> ss.SciStream:

nsf.sci_math.calc_signal_integral_of_frq_band(spec_data: ss.SciStream, start_frq: float, end_frq:float, spectral_density=False) -> float:
""" calculates the area of data in a specified frequency band

Example usage:

Device drivers for different Nanosurf accessories can be found here

accessory_interface: Class for communicating to devices connected to the Accessory Interface

device_tip_access_addon: Driver class to access all functionality of the “TipAccess Addon” for DriveAFM

device_tip_current_addon: Driver class to access all functionality of the “TipCurrent Addon” for DriveAFM

i2c: Chip drivers for many chips used in our devices. Attention, this functionality is only for experts and can potentially cause harm to the
system, if used incorrectly.

Hardware device drivers: nanosurf.lib.devices

import nanosurf.lib.devices.device_tip_current_addon as device_tip_current_addon

spm = nsf.SPM()
tip_current_addon = device_tip_current_addon.DriveAFM_Tip_Current_Addon()
if tip_current_addon.connect(spm):

tip_current_addon.set_gain(device_tip_current_addon.AmplifierGain.Gain_1Meg)

Example usage: change gain of tip current addon module for DriveAFM

import nanosurf.lib.devices.accessory_interface as nsf_ai
import nanosurf.lib.devices.trinamic_motor_controller as tmc

spm = nsf.SPM()
ai = nsf_ai.AccessoryInterface(spm)
if ai.connect():

search a specific device by its serial number
if ai.select_port_with_slave("998-00-00"):

slaveid = ai.get_slave_device_id()
print(f" Device found on Port({ai.get_current_port()})")

motor_chip = tmc.TrinamicMotorController(0x28)
ai.assign_chip(motor_chip)

Example usage: Access a specific device connected to Accessory Interface

Next-Level Nanotechnology Tools

Overview of demo apps
Where they are, how to start them

First, you need to know where the demo applications are. They are in the same place as the library.

Depending on your python installation, the demo applications are in the following folder (replace the python version with your installation):

Either here: %appdata%\Python\Python312\site-packages\nanosurf\app

or here: %programfiles%\Python312\Lib\site-packages\nanosurf\app

Open VisualStudioCode (VSC), select Menu File->Open Folder…

Enter one of these path above, but with your correct python version,

into VSC’s file explorer. Select an application of interest, click “Select Folder”

How to start a demo application from the library

Important: “Open Folder…” is important to use.
This moves the “current directory” of VSC to the folder
where your app is.

Starting the application by pressing the “F5” key is now
possible, and debugging is activated correctly.

Some applications in the app folder demonstrate different concepts of accessing library elements, but do not serve any real-life purpose:

Library demo applications – Simple scripts

demo_studio_scripting: # Two simple script to show how to connect to Studio and use its functions. Need a running Studio software.
demo_spec_setup_and_data_plotting: # Two simple scripts showing how to setup a spectroscopy, run it and plot results. All without big GUI
demo_creating_spec_pos_table_with_smiley: # A script showing how to setup a lithography to create indents. All without big GUI
demo_lateral_force_signal_calibration: # A Jupiter notebook showing how to calibrate a lateral force signal.
demo_move_sample_stage: # A script demonstrating the usage of the stage interface of the SPM Software
demo_scanning_and_lib_usage: # A GUI based demo showing some library functions (sci_math, gui.plot), start imaging, access data and plot

them. Need a running SPM control software.

The image on the right shows the GUI that is provided by the

demo_scanning_an_lib_usage application:

The code of this application demonstrates how to

• access SPMfunctions in background tasks,

• create am application GUI and plot data with the nanosurf.lib.framework ,

• save and analyze data with nsf controller.lib.sci_math and nsf.lib.util.export

functions

Nanosurf provides hardware add-on modules for the DriveAFM. These apps below are required to
control these add-ons:

Adding Operating Modes and DriveAFM Add-ons

app_DriveAFM_Tip_Access_Addon: # Controlling the TipAccess Addon for DriveAFM scan head
app_DriveAFM_Tip_Current_Addon: # Controlling the TipCurrent Addon for DriveAFM scan head

Through python scripting, the functionality of the DriveAFM can be extended. The set of

applications shown below perform some useful measurements.

app_Switching_Spectroscopy: # Voltage-Modulated-Spectroscopy for PiezoForce
app_Frequency_Sweep: # Amplitude versus Frequency sweeps of signal channels

The two following application templates provide you with the core of a QUI based application which can be used

to be filled in your specific code.

More details about programming your own GUI based application is described in the next chapter.

Templates to give a kick start

app_template: # Template to create a GUI application for general usage.
spm_template: # Template to create a GUI application and connect to SPM or Studio software

If you plan to distribute a python-based application as a windows executable, this template help you creating

most of the necessary configuration files and tweaks needed to create one.

Copy the content of the sub folder ‘pyinstaller’ to your own folder where you have your ‘main.py’.

Then adjust some parameters (e.g., application name) in the pyinstaller\resources\pyinstaller_one_file.spec

file to your needs. Execute the ‘create_one_file_exe.bat’ and you get an executable in ‘dist’ folder.

With complex applications it’s sometimes tricky to get all data into the executable.

py_installer_template: # template to create a self executable application based on py_installer package

Next-Level Nanotechnology Tools

Creating GUI-Applications
Using the app_themplate. Coding principle, style guide

If you plan to create a fully featured application with a nice GUI, you will faces many coding task

which are very common to all kinds of application development and are typically time consuming.

Therefor, many developers start creating simplified version of their application, copy and past old

code, just to be faster.

But this leads to hard to maintain source code and many times also to less robust code. Or users do

not get the standard behavior of the application that they are used to (e.g., remember last

application window position and size, loading/storing last parameter settings, …)

To over come all this problems, we provide with our library an application framework with lots of

core code to handle all this.

In addition, we provide multiple GUI-Elements found in control software, e.g. entering scientific

number, plotting data, and handling background worker tasks to make the app responsive to user

actions (e.g., ‘Stop’ button click or resizing application while performing a measurement)

Our framework’s GUI-Elements are based on “QT” and the python “pyside6” package. Plotting is

based on the “pyqtgraph” package. Both packages are being installed when you install our

“nanosurf” package.

Introduction

To create your own application, use app_template or spm_template as your starting point:

• Copy the template folder to an own project folder rename it to your project name.

• In your new project, copy the demo_module folder and rename it to your own function.

• Open Visual-Studio-Code and select File->Open Folder. Select the project folder that you

just created.

• In main.py change app_name and company_name (about line 15) to your project name.

• Add import statements of your new module (line 10) and add it with self.add_module() (line

30)

• Use demo_module as a reference how to create your own module. Later you can delete it

and remove it from main.py

That’s it. Now start coding your functionality in module.py and create the gui in gui.py

Start your app in debugging mode from any code window inside VSC with F5-Key

Getting started

Your App folder

Main.py

your_module_1

module.py

gui.py

your_module_2

module.py

gui.py

To create code that is readable and maintainable by others, programmers

should follow coding style guides and documentation.

Luckily, Python has its code style guide well defined in PEP8.

(PEP is a naming convention like we have in Jira with NANO1245 and is

available at https://peps.python.org/pep-xxxx/)

We follow this guide and in addition we use the typing hints defined in PEP484.

Typing hints is something like giving a variable a type information which is not

needed by python itself but helps the Visual Studio Code Editor extension

‘pylance’ and ‘ruff’ to help programmers with tips and color the code correctly.

As documentation style we follow the numpy library doc style, which is defined

here: Numpy doc. Again, Visual Studio Code can read them and help

programmers during coding. While hovering the mouse over a function name

the editor shows the function description found in your documentation as a

popup.

Coding Style

def create_filename(base_name: str, ext: str = '.dat', sep: str = "_") -> str:
""" Construct a file name based on pattern and current date/time.

The result will be something like 'my_data_20210613-100543.dat’
this with base_name 'my_data’

Parameters

base_name: str

Mask of the name (e.g., 'my_data')

........

Result

str:

constructed file name
"""
current_datetime = datetime.now().strftime("%Y%m%d-%H%M%S")
filename = base_name + sep + current_datetime + ext
return filename

Type hints

Return type

Numpy doc style:
Description,
Parameters and
Result

Function names are lower case

You get nicely colored code in
the editor and code
completion works

https://pep8.org/
https://www.python.org/dev/peps/pep-0484/
https://numpydoc.readthedocs.io/en/latest/format.html

A common mistake it to mangle functionality and GUI-Elements in one source code. This makes
code maintenance and increasing functionality hard. A common method to solve this issue is the
model/view pattern:

The functionality of a software is written in one part of code: You derive your code by subclassing
the ModuleBase class of the library and you program all the functionality as members in module.py.

Think of creating a device driver where all functionality of a “device” is exposed. So, create all

functions needed to do the measurement task or what ever it does exactly in here. No visualization

is done here, only data processing and commanding.

Visual components of your app (data entry elements, result visualization like plots or numbers,

status messages) are programmed in a class derived from ModuleScreen class and placed in gui.py

Interaction from module -> gui is done by emitting signals and the gui is listening to such signals

by connection to it (Use the Signal/Slot mechanism of Qt).

Interaction from gui -> module is done by calling functions in the module.

In case of parameters there is a ”binding” mechanism available which handles the synchronization

between value stored in a member variable in the module with the user interface element.

Such “bondable” parameters must be defined as members of type nsf.datatypes.ProVal.

GUI-Elements are connected to them by the bind_gui.connect_to_property() function in

gui.py/bind_gui_elements(). By this the GUI-Element gets updated whenever the property is

updated by the module and the modules parameter gets informed when the user change a value

in the GUI.

So, the module itself connects to the parameter and a function is called whenever the parameter is

changed (from GUI or from any other direct change of its value)

The graphic to the right is visualizing this principle.

Separating functionality and GUI
module.py

gui.py

class MyModul(ModuleBase):
def __init__(self):

self.image_size = PropVal(SciVal(2,”m”))
self.image_size.sig_value_changed.connect(self.size_changed)

def size_changed(self):
do something with a (e.g send to controller)
self.spm_scan.ImageWidth = self.image_size.value

class MyScreen(ModuleScreen):
def do_setup_screen(self):

self.my_edit = nsf_sci_edit.SciSciEdit(“Size”)
bind_gui.connect_to_property(self.my_edit, module.image_size)

A function module typically process data or measures data and has new

information about its state or data content.

Such state transition could be file_loaded, start_measuring, new_data_available,

…

We use the Qt.Signal/Slot mechanism for such communication.

A function module sends out event signals with emit() and other code parts

(e.g. GUI Elements) can receive such events and as a consequence a function is

called. To do so, a receiver must call connect() of the corresponding signal and

provide its call back function.

By this method, the GUI elements can react accordingly to the event (e.g. plot

new data, disable parameters during measurement, stop a task, …).

This principle keeps the GUI always reactive to user events and never blocks

keyboard and mouse input.

Signal/Slot Communication
module.py

gui.py

class MyModul(ModuleBase):
sig_work_started = Signal()
sig_work_done = Signal()

def do_something(self):
sig_work_started.emit()

do some work
sig_work_done.emit()

class MyScreen(ModuleScreen):
def do_setup_screen(self):

self.module.sig_work_started.connect(self.measurement_started)
self.module.sig_work_done.connect(self.show_result)

def measurement_started(self):
disable some gui elements

def show_result(self):
enable gui elemets
read result from module and plot result

If a function of a module must perform long lasting processes (e.g., measuring

a data stream over 10s) then this task must be executed in a background

thread. If not, the GUI would be blocked and changing parameters or pressing

a “Stop” button would not be possible.

To simplify setting up such a background task, the framework provides the

classes

nsf.frameworks.qt_app.nsf_thread.NSFBackgroundWorker

and

nsf.frameworks.qt_app.nsf_thread.SPMWorker

Derive a new class (e.g mytask) from it and implement the do_work() function.

The background task is initialized once with mytask.start_thread(). And each

time you would like to execute its task call mytask.start_worker()

The background task emits sig_worker_started, and sig_worker_finished

The module or the GUI should connect at least to sig_worker_finished to know

when the long-lasting task is finished.

Background Tasks
worker_task.py

gui.py

class MyTask(nsf.frameworks.qt_app.nsf_thread.SPMWorker):
def do_work(self):

do some work (e.g measuring data)
sig_new_data.emit()

class MyModul(ModuleBase):
self.mylongwork = MyTask()

def start_measure_data(self):
self.mylongwork.start()

class MyScreen(ModuleScreen):
self.module.mylongwork.sig_started.connect(self. measurement_started)
self.module.mylongwork.sig_new_data.connect(self.show_result)

	Slide 1: Nanosurf Python Library Overview
	Slide 2: Content
	Slide 3: Installing and usage
	Slide 4: The Nanosurf library
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Overview of the library functions
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Overview of demo apps
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23: Creating GUI-Applications
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

