Topography of SrTiO3 in dynamic mode

Strontium titanate (SrTiO3, STO) is an oxide of titanium and strontium exhibiting a perovskite structure. It has interesting and partly unique material properties. It is used as substrate for growth of oxide-based thin films and high-temperature superconductors.
STO forms surfaces that show a layered structure. The thickness of individual layers is in the range of a few Angstrom. Atomic force microscopy is an ideal tool to image and measure these structures.

AFM topography showing steps of strontium titanate

Topography of a strontium titanate (STO) sample. The sample clearly shows the typical layer structure STO. Here, the layers are not perfectly smooth, but exhibit residual roughness of approx. 125 pm (RMS). This is caused by a non-ideal termination process during the preparation of this STO sample.

Section profile and height distribution

The left graph shows the profile of the image shown above along a line extending from the top left to the bottom right corner of the imaged area. The profile also clearly shows the layered structure of the sample and reveals step heights of approx. 4 Å. Similarly in the right panel, the height distribution histogram of the image above clearly shows approx. 4 Å-spaced peaks for the different layers of the sample.

All measurements were performed using a Nanosurf Flex-Axiom system equipped with BudgetSensors Tap150 cantilevers. Images were processed using the MountainsMap SPM.

Nanosurf application note AN01107

Possible with

title strip=

Industrial solutions

In addition to our standard products we can design and develop custom-built atomic force microscope systems, stages, and parts. A dedicated team of highly qualified engineers is ready to create the optimal solution for your industrial application. For a first impression of what we can do, have a look at these examples.

title strip=

Flex-Axiom — AFM for materials research

By advancing key technologies and designs, Nanosurf has made the Flex-Axiom one of the most versatile and flexible atomic force microscopes ever, allowing a large variety of materials research applications to be handled with ease. Together with the powerful C3000 controller, complex material characterizations are possible.

title strip=

Flex-Bio — AFM for biology and life science

A key success factor in life science research is the combination of multiple techniques. With the Flex-Bio, Nanosurf's Bio AFM, you can combine the AFM imaging, spectroscopy and nanomanipulation capabilities of this system with the high-end optical imaging techniques available for inverted microscopes.